

Data

- CAPS
- BioMap2
- Critical Linkages
- TNC Resilient & Connected Landscapes
- DSL
 - Connect the Connecticut
 - Nature's Network

Tools

- MassAudubon MAPPR
- MA Wildlife Climate Action Tool
- Stream Crossing Explorer

Ecological Communities Wetlands & aquatic Upland nds & aquatic Riverine First order low-gradient First order high-gradient Second order low-gradient Second order high-gradient To Fifth order Shrubland Powerline Shrubland Open Land (old field) Coastal uplands Sea Cliff Vegetated Dune Coastal Dune Coastal Wetlands & aquatic Coastal beach Tidal flat Wetlands & aquatic Palustrine Rocky intertidal shore Salt marsh Forested wetland Shrub Swamp Salt pond/bay Bog Emergent Marsh Pond Ocean Estuarine rivers & streams First order estuary Vernal Pool Lacustrine Fifth order estuary Lake

Ecological Setting

- ...refers to the principal <u>physical and chemical characteristics</u> at multiple scales that strongly influence the composition, structure and function of a particular point in the landscape over the <u>long term</u> and serve to describe and distinguish it ecologically.
- Includes both local environmental conditions and landscape context
- Relatively static at relevant ecological time frames
- Ecological conditions may vary in response to natural and anthropogenic disturbances

Ecological Setting Variables Temperature Chemical & physical substrate • Growing season degree-days • Soil pH • Minimum winter temperature • Soil depth • Soil texture • Substrate mobility Solar energy • Water salinity • Water CaCO₃ content • Incident solar radiation Moisture • Wetness/Soil moisture Vegetation • Vegetative structure • Flow gradient • Flow volume Development • Developed •Tidal regime • Traffic rate Physical Disturbance • Impervious • Aquatic barriers • Terrestrial barriers • Wind exposure • Wave exposure • Steep slopes

CAPS Integrity Metrics

Stressor metrics

Road Traffic
Habitat loss
Microclimatic alterations
Mowing & plowing intensity
Domestic predators
Edge predators
Non-native invasive plants
Non-native invasive earthworms
Wetland buffer insults
Tidal restrictions
Salt marsh ditching
Coastal structures
Beach pedestrian traffic
Beach ORVs

Boat traffic intensity

Emissions intensity

Watershed-based stressor metrics

Road salt

Road sediment
Nutrient enrichment
Dam intensity
Watershed habitat loss
Imperviousness
Hydrological alterations
Impounded
Percent impounded
Altered stream geomorphology
Stream temperature alteration

Resiliency metrics

Similarity Connectedness Aquatic connectedness

BioMap2: What is it? BioMap2 is designed to guide strategic biodiversity conservation in Massachusetts by focusing land protection and stewardship on the areas that are most critical for ensuring the long-term persistence of rare and other native species and their habitats, exemplary natural communities, and a diversity of ecosystems.

Why BioMap2?

- 2001: BioMap MA Natural Heritage
 - Influence public and private decisions/funding, at scale
- 2001-2010: 170,000 acres protected by all entities
 - 117,000 acres (~70%) was in BioMap
 - Priorities adopted by state agencies, NGOs land trusts, municipalities, public and private funders, etc.

Why BioMap2? Update the information: Integrate BioMap (2001) & Living Waters (2003) Account for recent protection & development Incorporate new species & natural community data Enhance the scope to include: MA Wildlife Action Plan (2005): Species & Habitats Intact Ecosystems and Landscapes Resilient in the face of climate change

Conservation Targets

- Species (Fine filter)
 - MESA-listed Species of Conservation Concern
 - Non-listed Species of Conservation Concern from the State Wildlife Action Plan (SWAP)
- Habitats (Fine/Coarse filter)
 - Coastal habitats
 - Wetlands
 - Rivers, streams, lakes, & ponds
 - Grasslands, shrublands, & barrens
 - Forests
- Landscapes (Coarse filter)

Conservation Targets – Examples in Presentation

- Species (Fine filter)
 - MESA-listed Species of Conservation Concern
 - Non-listed Species of Conservation Concern from the State Wildlife Action Plan (SWAP)
- Habitats (Fine/Coarse filter)
 - Coastal habitats
 - Wetlands
 - Rivers, streams, lakes, & ponds
 - Grasslands, shrublands, & barrens
 - Forests
- Landscapes (Coarse filter)

Climate Adaptation Approaches

Conserving Biodiversity in the Face of Climate Change Heller and Zavaleta, 2009, Lawler 2009

- Resistance: Keep it the same
 - The ability to withstand a disturbance
- Resilience: Maintain ecosystem function
 - The ability to recover from a disturbance and return to a functional state
- Transition: New cast, new regimes
 - The ability to change to another ecological state

SWAP Habitats	
Small Scale SWAP Habitats	Vernal Pools Peatlands and Associated Habitats Marshes and Wet Meadows Rocky Coastlines Rock Cliffs, Ridgetops, Talus Slopes, and Similar Habitats
Medium Scale SWAP Habitats	Small Streams Shrub Swamps Forested Swamps Lakes and Ponds Sait Marsh Coastal Dunes, Beaches and Small Islands Grasslands Young Forests and Shrublands Riparian Forest
Large Scale Habitats	Large and Mid Sized Rivers Marine and Estuarine Habitats Upland Forest Large Unfigmented Landscape Mosaic Pitch Piner/Scrub oak

A CAPS metric that measures the value land attains from being *locally* connected* to land in similar settings.

Critical Linkages I

Assesses the increase in local connectedness (aquatic or terrestrial) from single infrastructure upgrades (culvert replacement, dam removal,

Critical Linkages II
Assesses the effect of multiple landscape changes on regional connectivity.**

- a. Measures the increase in regional connectivity from multiple infrastructure upgrades (road passage structures) \rightarrow identify best set of sites for passages.
- b. Measures the loss in regional connectivity from the development of multiple parcels → identify critical parcels for land protection.
- * Local connectivity ≈ homerange, dispersal
 ** Regional connectivity ≈ multi-generation dispersal, gene flow, range expansion/contraction

107

